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Starting from the exponential Euler polynomials discussed by Euler In
"Institutionis Calculi DifTcrentialis:' Vol. II. 1755, thc author introduced in "Linear
operators and approximation." Vol. 20. 1972. the so-called l'x(loni'l1fial Full'/"
5(1lines. Here we describe a new approach to these splines. Let I be a constant such
that

I~' Ie"'. " ." II ::. I ,. O. 1 I I.

Let S,(x: I) be the cardinal linear sflline such that

S,(l': I) = t' for all I't= 7.

Starting from S,(x: I) it is shown that we obtain all higher degree eXflonential Euler
splines recursively by the averaging operation

S"IX: I)-I
\ 1:

S" ,(II: I) dull' S" ,(u: I) du (n.~ 2.., ., .. ).

Here S,,(x: I) is a cardinal spline of degree n if n is odd. while S..I\· + :: I) is a
cardinal spline if n is cven. It is shown that thcv have the properties

lim 5,,(x: I) ~ I'

for " t= Z.

II' c'" '.

1. INTRODUCTlOl"

Here I wish to describe a new recursive construction of the Exponential
Euler splines which I introduced in \21-a construction to be described in
Section 2. We first recall their definition as given in [21.

Let/" = iS(x) ~ denote the class of cardinal splines S(x) of degree 11,

having knots at the integers 1'. Furthermore, let / ;;' = jS(x + -,\) E /111 be
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the class of midpoint cardinal splines, i.e., having knots at II -- t For a

constant t such that

( I. I )

we wish to construct the cardinal spline which interpolates at all integers the
exponential function t' = It I' eiax

. In 121 this problem was solved within
each of the two classes /n and. / I~' These solutions sn(x) and S,~(X) were
constructed as follows:

DEFINITION. We define sn(x) E /n (n) I) in two steps. We start from
Euler's generating function II. Chap. VII, Sect. 1781

defining the Eulerian polynomial A n(x: t), set 1

Pn(x) = An(x: t)/A nCO; t).

and define

(1.2 )

(1.3 )

sn(x) = Pn(x) if a~ x < I. (1.4 )

The seco~d step consists of extending the definition of sn(x) to all real x by
means of the functional equation

sn(x + I) = tsn(x). (1.5 )

The remarkable property of the polynomial Pn(x). defined by (1.3), is that the
resulting sn(x)E C-'(R) and therefore sn(x)E /n' From (1.3), Pn(O)= I
and (1.5) shows that Sn(II)=t" for all IIEZ. The function sn(x) is the
exponential Euler spline of the class '/n' Euler provided in 1755 the seed
( 1.3): all that I had to do in 12] to obtain sn(x) was to extend this seed Pn(x)
to all x by means of (1.5).

DEFINITION.

function
We define S,~(X) E .. *

/ n' Now we use the generating

~e(X+1!2):=\' Bn(x;t) n
t - eO - n! z,

()

(1.6 )

I It is known that if A ,,(0. I) = O. then I is negative. which is excluded in (1.1 ); Similarly for
R ,,(0. I) in (1.7).
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defining the midpoint Eulerian polynomials BI/(x; t), set

p,;(."() = BI/(x; t)/BI/(O; t),

and define

( 1.7)

s,;(X) = p,;(X) ( 1.8 )

The second step is to extend s; (X) to all real x by

s;;(X + I) = ts;;'(x). (1.9 )

Now (1.7) is such that s;(x) E C" I(R) and therefore s,;(x) E· / ;.
In Section 2 we define recursively, by (2.1) and (2.5), a sequence of

cardinal splines

such that

SI/(x) = SI/(x; t)

SI/(x) = sl/(x)

= s,;(x)

(n = l. L.,)

if n is odd,

it' n is even.

(1.10)

( 1. I I )

In the remainder of the paper we use only the new construction to obtain all
known properties of the Euler splines and also some new ones.

While our assumptions (L I) excluded negative values of t, we use in
Section 6 the new construction to discuss the classical case when t = -1.

2. A NEW ApPROACH TO THE EXPONENTIAL EULER SPLINES

As t is kept fixed throughout, we simplify our notation by writing
SI/(x; t) = SI/(x). We define SI(X) by the conditions

SI(X) E ·/1' (I'E Z). (2.1 )

Plotting the sequence (t') in the complex plane we see that the graph of
z = S lx-) (-00 < x < (0) is the biirifinite polygon with successive uertices
(t ' ). Equivalently, we may define S lx-) by setting

S I (x) = I + (t - I) x if 0 ~ x ~ l. (2.2)

and extend its definition to all real x by the functional equation

(x E R). (2.3 )
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Starting from S I (x), we define the exponential Euler spline
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(xER,n=2,3, ... ) (2.4 )

recursively by the averaging operation

It does seem remarkable that starting from the rough polygon of S I (x), the
repeated smoothing operation

should produce the progressively smoother sequence of interpolants S,,(x).
Also that our formula (2.5) does not depend on t explicitly.

In Section 3 we state the properties of SI1(x), which will also show the
validity of their definition (2.5). These properties are established in Sections
4 and 5.

3. VALIDITY OF THE DEFINITION OF THE SI1(x)
AND THEIR PROPERTIES

Their definition is evidently valid in the case that t > O. for S lx-) > 0
(x E R), and by induction we see that

for all x and n (t> 0).

We loose no generality by assuming in Sections 3-5 that in (1.4) we have

0<a<7L

In this case the following propositions will be established.

(I) We have

(3.1 )

.x+ 1/2

111(X) := J SI1(u) du '* 0
~ x- 1/2

for x E R. n = I, 2..... (3.2 )

This justifies our definition (2.5) since no denominators can vanish.

(II) S 11 (x ) satisfies the functional equation

for xER,n=I.2..... (3.3 )
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(III) Along the arc

A n•x :z=5n(u) (x 4~ u ~ x + *) (3.4 )

the argument of z = 5 n (u) is steadily increasing by the amount

arg 5 n(x + 4) -- arg 5
1l
(x - 4) = u. (3.5 )

(see Fig. 1).
The tangent vector 5;,(u) is steadily turning counter-clockwise along A 1/.,

from 5;.(x-4) to 5;,(x+4). such that

arg 5;,(x + 4) - arg 5:,(x -- *) = u. (3.6 )

Denoting by T the intersection of the lines carr,ving the vectors 5 ;Jx ::t *). the
four points

are on a circle r. (3.7)

The arc A n.X is contained in the quadrilateral Q of the four points (3.7).

The arc A 11 •.\ is convex (Fig. 1). (3.8 )

\ ,,

dv(\TI..,.\:---~-
! \

~. "
! \

/ ,
/ \ ,,, \r

\

/
lSI (x+"')I n

An,x

o

\
\

\ ,,, ;
/

FIGURI 1
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(IV) For all n.
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S ( ) E \ /"
"x 1./ ,;

V. The limit relation

ifn is odd.

if n is even.
(3.9)

lim S,,(x) = t' = it e in
\

n ---> 'J'

holds uniformly in x in every finite interval of R.

(VI) For the special case so far excluded.

t=-L

propositions (II) and (IV) remain valid. while (I) is to be replaced by

(3.10)

(3.11 )

and (v) by

.1,'2

I S,,(u: -1) du > 0
. 1,'2

(11 = 1.2.... ). (3.12)

lim S,,(x: -I ) = cos nx.
11-->1

4. PROOFS OF PROPOSITIONS (I)--(IV)

(3.13 )

All these propositions are evident if n = 1 in view of (2.3). which implies
that

triangle (0. S I (x - ~). S, (x + ~)) is similar to triangle (0. L t).

Notice also that if n = I, the arc A I.x of (3.4) is identical with the union of
the two sides of the quadrilateral Q of Fig. 1 that meet in T.

Assume that (I). (II), (Ill). are already established for all values up to and
including n - 1 and let us prove them for the value 11.

(II) Using the notation of (3.2). we have

.x+ )/2

S,,(X + 1) = I S" ,(u)ll" ,(0)
'x + In

.X t 1,/2

= I s" ,(u + 1) dull" ,(0)
·'x- 1,'2

-x' 1/'2

= ItS" ,(u) dull,,_ ,(0) = tS,J,).
"x- 1 /'2

(4.1 )
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(III) Relation (3.5) follows immediately from (3.3) by replacing x by
x -1. The remaining statements are obtained as follows: In (2.5). we replace
x by u and differentiate with respect to u obtaining

S:, (u) = ~ S" 1(u +1)-- S" 1(u - 1) i/ I" 1(0 )

= 1/S " l(u-1) S" l(u-1}f/I" 1(0).

and finally

S:,(u)=c·S" l(u-1).wherec=(t-I)/I" 1(0)(*0). (4.2)

Since S" I (u -1) turns counter-clockwise (Fig. I) by the angle a as u
increases from x -1 to x + 1, we see that (4.2) proves that S:,(u) turns, by
(3.6), by the angle a, hence (3.6) holds. This already proves all our
statements for n, as summarized in our Fig. I.

(I) Let x' be such that x -1 < x' < x -+ 1 and

arg S(x') = 1 iarg S,,(x+ ~) + arg S,,(x -1)f.

It follows from (3.5) tryat

- ~ ~argS,,(u)-argS,,(x')~ ~ (x-+~u,,;:x++). (4.3)

Dividing (3.2) by S,,(x')=IS,,(x')lexp(iargS,,(x')); we obtain

'.\- t 1'2

I"(x)/S,,(x' ) = I IS,Ju)/S,,(x')1 eilar~s"ll1l args,,(\)) du.
·x 1,2

and from (4.3) we conclude that

.X t 1,/2 a
Re\I,,(x)/S,,(x')~ >.1'-1/2 IS,,(u)/S"(x')I· cosT du > O.

This proves (3.2).

(IV) This is evident by induction from (2.5) because the limits of
integration are x ± ~, in view of the general properties of cardinal splines. It
liewise follows by induction that S,,(x) E e" I(R) for all n.

5. PROOF OF PROPOSITION (V)

We write

'I = log I = log III + ia. (5.1 )
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hence t = eY, and define the new function wn(x) by setting
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(x E R). (5.2)

From (3.3) we have that

S,Jx+ 1)=txt1wn(x+ 1) =tSn(x)=ttXwn(x),

hence wn(x + 1) = wn(x), showing that wn(x) is periodic of period 1. Using
(2.2) let us find the Fourier series of

if 0 <x < 1. (5.3 )

Since w](x) E C(R) its Fourier series should converge absolutely.
For its Fourier coefficients we find by integration by parts that

and so

Next we observe that

(5.4 )

·X+ 1/2 e,,/2 _ e - y/2I e()·thil.jndu=(_l)" . elythi,')x. (5.5)
cx- 1/2 y + 2mv

Performing the operation t~ :;; n - 1 times on (5.4), and dividing the result
by its value at x = 0 to enforce Sn(O) = 1, we obtain the expansion

en (_l)",n-l) I ex. (_l)"'ntl)
S (x) = \' e(yfhir)x \' .

n :;, (y + 2niv)n + 1 --;., (y + 2niv)n t 1

Since t' = eYx , we find for wn(x) of (5.2) the expansion

Let us prove that

lim w,,(x) = 1.
n --.(f'

(5.6 )

(5.7)

(5.8 )

Proof We multiply both terms of the fraction (5.7) by y" + 1; except for
the two terms for v = 0, which are = 1 in both series, all other terms are in
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absolute value =ly/(y+2niv)I,,·I(v*0). except for a constant factor.
Writing p := log tl. we have)' = p + iu and so

+ 2nil'f = 1(P + iu)/(p + i(u t- 2nv))i'

p' +- u'

p' + ((0hv)"

Now our condition -n < u < n implies that

u + 2nv ? 2n -- (t i > I u

and so

if l'~' 0. (5.Y)

(5.10)

Moreover 15( > 0. since p and u cannot both vanish because t *' I. But then it
is clear that

w,,(x) = I + OU5;" I).

From (5.2) and (5.11) we conclude that

(5.11 )

5,,(x) _ I = 0(15'" I).
t\ , uniformly for x E R. (5.12 )

where 15( is defined by (5.10).
Notice that 15( approaches I if u is close to Tn.

On Programming the Exponential Function on a Computer

The construction of s,,(x) as given by our Eqs. (1.2)-( 1.5) seems eminently
suitable to achieve the title of this subsection. Obtaining the polynomial
p,,(x) of (1.3) requires the following algorithm:

Determine the a,. = a,(t) recursively from the relatiolls

and then

(v = I. 2.... ). (5.13 )

\ ," -1- ( II) ," 1 (' II) '" I ! 4p,,(x)= r\ . 1 a1x +.2, a,x + ... +a"\/a,,. (5.1 )

This is particularly convenient if t = 2 when (5.1) reduces to

( v ) (' v )a, = 1 + I. a 1 + ... + v .__ 1 a" 1 (v= 1,2.... ,ao = I), (5.15)
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showing that all coefficients a,. are integers. Besides, the exponential 2' IS In

several ways remarkable, since ,.12' = 2'. and among all entire functions that
assume integer values for x = 0, 1,2,.. ., 2' is the one of least grOll'th
(theorem of Hardy and P6Iya).

If t=2, then the pin (5.10) becomes log 2: also u=O and (5.10) shows
that

s: \ 47[2 I 12
U - I + = 0.1096.

2 - I (log 2)2 \

This shows that sl1(x) = sl1(x: 2) approximates 2' to nearly n decimal places.
In [2, p. 4031 we found that, for t = 2,

P7(X) = (x 7 + 7x" + 63x; + 455x4 + 2625x1 + 11361x2

+ 32781x + 47293)/47293.

Computations show that

and that

In O~x~ I.

the error function 2' - P7(X) changes sign just once. (5.16 )

An algorithm producing 2' of course allows us to compute e' = 2' I"~:.

A better approximation of 2' is obtained if we replace in [0 .. I I our
polynomial P7(X) by the polynomial *P7(X) of best approximation of 2'.
afterwards obtaining the approximation *S7(X) for all real x by *S7(X + I) =
2*s7(X). However, the new global approximation *s7(X) so obtained is
el'ident~v discontinuous for all integer values of x, It'hile our approximation
S7(X) is in the class C"(-oo, (0).

Of course, the approximation (5.12) deteriorates as we pass from t = 2 to
larger values of t. Thus we find that

(
47['. I'

6,. = (I + 47[2) 1/2 = 0.1572. 61IJ == 1+ (log 10)' ) = 0.3441.

The remark (5.16) is not an isolated result, as we have proposition

(VII) (I) If t > 0, then the tlt'O curves of the (x,)') plane

I'll:)' = S,,(x; t), F:y= r' (xE R), (5.17 )

agree at the points (x, y) = (v, t r
), the slopes of the tangents to I'll being in a

fixed nonvanishing ratio to the slopes of the corresponding tangents to r. It
follolt's that I'll crosses I' in every interval v < x < v + I.
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(2) If in (1.4) we have 0 < a < n. then for the two curves in C

tl/: z = SI/(x; t), t:z=t' (xER). (5.18)

we have a similar situation: Either tl/ crosses t in the same direction at all
points t", or else tl/ is tangent to t at all points I'. as in Fig. 2, where I I I = I.

Proof We drop the t, writing SI/(x; t) = SI/(x), t' = Sf (x). From the
relations S~(x + 1) = IS~(x), S~(x + I) = tS'r(x), we obtain. for x = O. that

S:,(v)

S:x:,(v)

S:,(O)
---

S~(O)
for all v E Z.

This implies our conclusions in both cases: For the curves (5.17) we obtain
the constancy of the ratio of slopes of their tangents, and for the curves
(5.18) we have the constancy of the angle between their tangents.

6. PROOF OF PROPOSITION (VI): THE CASE OF THE EULER SPLINES

Now t=-I and we use for SI/(x)=SI/(x;-I) the term Euler splines.
omitting the "exponential." These are well-known functions which are the

I

\ \
J
1\

::; I (x) II \
n \

, t- 1

I
!

/
/

/
/

"" /'
~---- 2-~~

t

FIGURE 2
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subject of Kolmogorov's famous extremum property of the Euler splines (for
references see [4]).

Our construction (2.5) is particularly effective in this case and we will
actually prove more than (VI) and establish the known proposition.

(VIII) The function S II(X) = S II(X: -1) has all the properties of the
function cos nx concerning symmetries, zeros, signs, and monotonicities.

Proof These statements are evident for n = L when S I (x) = E I (x) is the
linear Euler spline which the author found so useful in a study of billiard ball
motions in a cube [51. If we assume (VIII) to be true up to and including
11 - L then the validity of all parts of (VIII) for the function

(6.1 )

become so obvious, that we may practically omit any further discussion. A
few remarks will certainly suffice. The identity SII(X + I) = -SII(X) is proved
as in (4.1), and it implies the periodicity SII(X + 2) = S,.(x). All symmetries
and sign properties of S II _ 1(x) are transmitted to S ,.(x) by (6.1), e.g.. why is
SII(X) decreasing in 10, I J? Answer: Because as x increases from °to I, the
numerator of (6.1) visibly decreases, since it drops positive area while adding
negative area (a rough diagram helps).

Let us sketch a proof of (3.13). Since SI(X) = II - 2XI if -I ~ x ,,;: I, we
obtain the Fourier series

Notice also that (5.5), for y = ni, gives

Performing the operation J~~ :;~ (. )dx on both sides of (7.2) 11 - I times and
dividing by the value at x = °of the result, we obtain that

(_1)..(11 I) I J. (_1)<"1" II
S X = '\' (2/'tllnix '\'

,,(.) -;. (2v + 1)" + I e ~ (2v + I)" I I .

Notice that in both series the coefficients of the terms for v = °and I' = -I
become = 1. It follows that we may rewrite the last expansion as
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r: O. 1

(-1)"// II

(21' + 1)//' I

(' () \ ~ix t-" ~ix,)//x=/e c

II + 1 +
1

{'.i O.

(--1 ),.(// II

(21' +- 1)// I

(?/' j lhix Ie
\

which implies that

I . '. I I
1
2 cos 7L\ + 2 \------~-cos(2v + I) 71X\

,:-'1 (21' + I )//, I

12 + 2 \. I I
1 ,I -(21' + 1)// i I \.

5//(x) = cos 71X + 0 (~) as n --. 00.

7. A GEOMETRIC COROLLARY OF (2.5) FOR

BOUNDED EXPONENTIAL EULER SPLINES

The only bounded exponential (' have III = I. hence (' == e"". However.
the corresponding sequence of splines 5//(x: t) are the most attractive among
exponential Euler splines (see 13. Dedicatory page and pp. 29-321). The
curve::. = 5,,(x: t) is bounded iff II = I. or

1:= rio. with 0 <- U <- 71. say. (7.1 )

From the unicity property of proposition (VI I) (Section 6) it easily follows
that the curve

1'//.,,:::' = 5//(x) = 5,/x: e''') (-OO<X<oo) (7.2)

has all the rotational and ordinary symmetry properties of the polygon
II." : ::. = 5 I (x: ei

"). Moreover. the curve (7.2) is closed iff [ = ei
" is a root of

unity. ['//." is contained in Iz I < I. except at the points [' = ei
,,, which it

interpolates. The arcs between two such consecutive points bulge out
progressively as 11 increases. and converge to ::.1 = I as 11--> 00. by
proposition (v) (Section 3). The knots of ['//." are on 1z = I if 11 is odd. or in
the midpoints of the arcs if n is even.

Figure 2 represents three arcs of each of the consecutive curves

and r//. n (11 ? 2). (7.3 )
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On these arcs we have marked in Fig. 2 the three points

Differentiating our fundamental relation (2.5) we obtain

S~(x) = c/1(S/1 lex + ~) - S/1_I(X - ~ )),

/.)/)

where c/1 = I! I S/1 leu) du.
I' 1· ~

We claim that

c/1 > O.

Proof If we let x = 0 in (7.4), we obtain

337

(7.4 )

(7.5 )

(7.0 )

and Fig. 2 shows that both S:,(O) and S/1 1(~)-S/1 l(-~) become purely
imaginary with positive imaginary parts. The reason: S:,(O) is obviously
vertical and pointing upwards, while S/1 l(~) and S" l(-~) are the
midpoints of the two symmetric arcs meeting at z = 1. Now (7.5) becomes
clear from (7.6). We have just proved our last proposition

(IX) If we think of x as time. then the velocity vector S:,(x) is parallel
to the vector S/1_I(X+{)-S/1 I(X-{) and their ratio is a positil'e
constant.
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